Predictability of Sea Level Pressure Anomalies Over the North Pacific Ocean

1978 ◽  
Vol 8 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Russ E. Davis
2015 ◽  
Vol 120 (1) ◽  
pp. 27-45 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Yu-heng Tseng ◽  
Cheng Sun ◽  
Yipeng Guo

2021 ◽  
Vol 21 (10) ◽  
pp. 7499-7514
Author(s):  
Lixia Zhang ◽  
Laura J. Wilcox ◽  
Nick J. Dunstone ◽  
David J. Paynter ◽  
Shuai Hu ◽  
...  

Abstract. Air pollution is a major issue in China and one of the largest threats to public health. We investigated future changes in atmospheric circulation patterns associated with haze events in the Beijing region and the severity of haze events during these circulation conditions from 2015 to 2049 under two different aerosol scenarios: a maximum technically feasible aerosol reduction (MTFR) and a current legislation aerosol scenario (CLE). In both cases greenhouse gas emissions follow the Representative Concentration Pathway 4.5 (RCP4.5). Under RCP4.5 with CLE aerosol the frequency of circulation patterns associated with haze events increases due to a weakening of the East Asian winter monsoon via increased sea level pressure over the North Pacific. The rapid reduction in anthropogenic aerosol and precursor emissions in MTFR further increases the frequency of circulation patterns associated with haze events, due to further increases in the sea level pressure over the North Pacific and a reduction in the intensity of the Siberian high. Even with the aggressive aerosol reductions in MTFR periods of poor visibility, represented by above-normal aerosol optical depth (AOD), still occur in conjunction with haze-favorable atmospheric circulation. However, the winter mean intensity of poor visibility decreases in MTFR, so that haze events are less dangerous in this scenario by 2050 compared to CLE and relative to the current baseline. This study reveals the competing effects of aerosol emission reductions on future haze events through their direct contribution to pollutant source and their influence on the atmospheric circulation. A compound consideration of these two impacts should be taken in future policy making.


2011 ◽  
Vol 24 (4) ◽  
pp. 1170-1183 ◽  
Author(s):  
Sang-Wook Yeh ◽  
Yune-Jung Kang ◽  
Yign Noh ◽  
Arthur J. Miller

Abstract This paper examines characteristic changes in North Pacific sea surface temperature (SST) variability during the boreal winter (December–February) for two subperiods (1956–88 and 1977–2009) during which the 1976/77 and the 1988/89 climate transitions occurred. It is found that the Pacific decadal oscillation (PDO)-like SST variability plays a dominant role in the 1976/77 climate transition, while both the North Pacific Gyre Oscillation (NPGO)-like and PDO-like SST variability contribute to the 1988/89 climate transition. Furthermore, the leading mode changes from PDO-like SST variability during the period 1956–88 to NPGO-like SST variability during the period 1977–2009, indicative of an enhancement of NPGO-like SST variability since 1988. Changes in sea level pressure across the 1976/77 climate transition project strongly onto the Aleutian low pressure system. But sea level pressure changes across the 1988/89 climate transition project primarily onto the North Pacific Oscillation, which is associated with remote changes in the Arctic Oscillation over the polar region as well. This contributes to enhancing the NPGO-like SST variability after 1988. The authors also analyze the output from an ensemble of Tropical Ocean and Global Atmosphere (TOGA) experiments in which the observed SSTs are inserted only at grid points in the tropics between 20°S and 20°N. The results indicate that the changes in the North Pacific atmosphere in the 1976/77 climate transition are mostly due to the tropics, whereas those in the 1988/89 climate transition are not.


1962 ◽  
Vol 19 (6) ◽  
pp. 1121-1141 ◽  
Author(s):  
N. P. Fofonoff

Recently, a series of computer programs was developed by the Fisheries Research Board of Canada Pacific Oceanographic Group to enable more intensive studies to be carried out of the effects of winds over the ocean surface on the circulation in the ocean. The programs are used to compute geostrophic velocities and mass transports from oceanographic station data, Ekman and total transports from mean sea-level atmospheric pressure.The theoretical background for the programs is developed and examples of the results obtained are given. More complete discussions of the results will be given as processed information is accumulated.


Sign in / Sign up

Export Citation Format

Share Document